
Ocamlviz

Julien Robert and Guillaume Von Tokarski

September 9, 2009

Contents

1 Introduction

Ocamlviz is a free software funded by Jane Street Capital within the framework of Jane
Street Summer Project. It allows the monitoring of Objective Caml programs and
values in real time by using the Ocamlviz library. Ocamlviz can also be used as a
debugging tool.

2 Installation

2.1 Prerequisites

You need Objective Caml ≥ 3.10.0 to compile Ocamlviz. To compile the GUI, you also
need Lablgtk2 ≥ 2.10.1-2 [?] and Libcairo-ocaml ≥ 20070908-1build1 [?]. (If one of these
libraries is missing, the compilation will proceed but the GUI will not be compiled.)

To display trees within the GUI, you need Graphviz [?] to be installed. But Graphviz
is not required to compile Ocamlviz.

2.2 Compiling from sources

Within Ocamlviz sources, configure with

./configure

Compile with

make

As superuser, install with

make install

1



3 User Manual

The documentation can be found at the following adress: http://ocamlviz.lri.fr/

doc/Monitor_sig.Monitor.html or by compiling with the command “make doc” (the
index of the documentation will be the file index.html inside the folder doc).

3.1 Instrumenting User Code for Monitoring

Two libraries are provided:

• Ocamlviz: This is the main library. It uses alarms to collect and send data. If the
monitored program also uses alarms, open the Ocamlviz threads library instead.
Ocamlviz may not work properly in native compilation if the monitored program
doesn’t trigger the GC. If this happens, compile the program in byte code.

• Ocamlviz threads: This is the library that should be used if the user program
already uses alarms. Note that Objective Caml threads are not efficient and
this solution is a patch.

You have to call Ocamlviz.init (or Ocamlviz threads.init) in your code.
You may use Ocamlviz.send now () (or Ocamlviz threads.send now ()) to force

a sending.

3.1.1 Module Point

This module is a check-point tool. When putting a Point.observe annotation, it will sum
every time the program goes through this line of code. For instance:

let point1 = Point.create "observe f"

let _ = Point.observe point1

3.1.2 Module Time

This module is a chronograph tool. The timer that was created can be started and
stopped. Note that a stopped timer can be restarted. For instance:

let timer1 = Time.create "time in function f"

let f () =

begin

Time.start timer1;

...

Time.stop timer1;

end

let g a b c d = a+b+c+d

let _ = (Time.time "time in function g" g) 1 2 3 4

2



3.1.3 Module Tag

The module Tag allows creating sets of Objective Caml data. It’s possible to monitor
the cardinal number and the size of these sets. The sets can contain any value of any
type. For instance:

let tag = Tag.create ~size:true ~count:true ~period:1000 "tag example"

let x = Tag.mark tag (true::[])

let y = Tag.mark tag (6. +. 1., 6 + 1)

let z = Tag.mark tag "string"

The set tag contains these 3 elements. The size and the cardinal number of this set
will be monitored. The period is in milliseconds. For each tag, Ocamlviz goes through
its elements in the heap. The bigger the elements, the slower the program, so correctly
adjust the period.

3.1.4 Module Value

This module allows the monitoring of values with the following Objective Caml types:

• integers

• floating point numbers

• booleans

• strings

For instance:

let f x = x *. 0.1

let _ = Value.observe_float_fct ~period:2000 "f 2." (fun () -> f 2.)

let s = "weak"

let _ = Value.observe_string "s" s

let _ = Value.observe_string_fct ~weak:true "fct_s" (fun () -> s)

let a = Value.observe_int_ref "a" (ref 0)

let b = ref true

let _ = Value.observe_float_ref "b" b

The argument weak means that the value can be attached to a weak pointer and garbage
collected.

3



3.1.5 Module Hashtable

This module is meant to monitor Objective Caml hash tables. It monitors the:

• hash table length (number of elements inside the table)

• array length (number of entries of the table)

• number of empty buckets

• hash table filling rate

• longest bucket length

• mean bucket length

For instance:

let h = Hashtable.observe ~period:1000 "h" (Hashtbl.create 17)

Ocamlviz goes through the whole hash table in the heap. The bigger the table, the
slower the program, so correctly adjust the period.

3.1.6 Module Tree

This module allows the monitoring of polymorphic variants, once they were changed into
the following type:

type variant = Node of string * variant list

For instance:

let tree1 = (Protocol.Node ("1",[

Protocol.Node ("1.1",[]);

Protocol.Node ("1.2",[]);

]))

let _ = Tree.observe "tree1" (fun () -> tree1)

3.1.7 Log

This function builds a log and expands it. For each call, it will store the string along
with its time.

let _ = log "%d This is how we use %s in %s" 1 "log" "ocamlviz";

log "%f It is %b that log works like ocaml printf functions" 2. true

4



3.1.8 Kill

In some modules, there are functions called “killed”. Calling this function will stop the
monitoring of a data. This can be usefull if the data won’t change anymore and if its
monitoring costs a lot of ressources.

3.1.9 Wait for connected clients & wait for killed clients

Ocamlviz provides two functions to blocks the program execution:

• wait for connected clients i: this hangs up the program execution until i clients are
connected

• wait for killed clients () : this hangs up the program execution until every clients
are disconnected

3.1.10 Automating Instrumentation using Camlp4

It is possible to instrument automatically a file using camlp4. For this purpose, a pre-
processor called pa ocamlviz is provided. It is used as follows:

ocamlopt -c -pp "camlp4 pa_o.cmo str.cma pa_ocamlviz.cmo pr_o.cmo" source_file.ml

This will modify the following top-level instructions:

• References on integers, floating points, booleans, strings

• Hash tables

• Functions (time and calls monitoring)

If the data are visualized through the GUI for a file called ”file”, data’ names will be
”file name”. For example, a function ”f” from a file ”g.ml” will be displayed as ”g f”.

3.2 Linking with Ocamlviz

To link the user code with Ocamlviz, use

ocamlc unix.cma libocamlviz.cma <your files>

in bytecode, and

ocamlopt unix.cmxa libocamlviz.cmxa <your files>

in native-code.

Note that Ocamlviz.init (or Ocamlviz threads.init) must be called somewhere in
the user code.

Once linked with Ocamlviz, the user code acts like a server. The default port used by
this server is 51000. Another port can be specified using the OCAMLVIZ PORT environment
variable.

5



The server’s default timer is 0.1 seconds, you can specify another timer by changing
the OCAMLVIZ PERIOD environment variable. We advise to keep a timer greater or equal
than 0.1 seconds.

Calculing the size of living data in the heap can cost a lot of ressources and consid-
erably affect the program execution. The computational complexity of this calculus is
O(n), n being the number of blocks of the heap. The default period of this calculus is 1.0
second. You can specify another period by changing the OCAMLVIZ GC PERIOD environ-
ment variable. We advise to keep a period greater or equal than 0.1 seconds. NB: this
doesn’t affect the heap’s total size, which is get according to server timer.

3.3 Visualizing Monitoring Results

Ocamlviz provides two clients to visualize the monitored data.

3.3.1 GUI

The GUI is launched with

ocamlviz-gui [options]

Command line options are

-server to specify the server machine (the default is the local host)

-port to specify the server port (the default value is 51000)

If no Ocamlviz server is running, the GUI fails with the error message

connection: couldn’t connect to the server machine:port

Otherwise, it opens a main window which looks like:

6



The data are displayed in a notebook, in the following pages:

• Stats: displays Point and Time

• Values: displays Value

• Tags: displays Tag

• Hash tables: displays Hashtable

• Trees: displays Tree

• Log: displays the log

• Gc: displays the garbage collector informations about the size of the heap, the size
of living data in the heap, along with their representation on a graph

Inside some cells, there is a second information which is the last time the data was
modified. The color of the text can be red (value was killed) or green (value was garbage
collected). Cells can also contain check boxes. These check boxes, once checked, allow to
create graphs and lists in new pages or existing pages, through the menu “Visualize in”
or shortcuts. A list can contain any data, but a graph can only display data of the same
type, representing integers, floating-points, percentages or bytes.

It is possible to pause the GUI and even to travel back in time through the record
panel. The database will store one minute of data by default, but this can be changed in
the menu preferences. The maximum window is one hour.

7



3.3.2 ASCII Client

This client logs the monitored data into a file.

8



The ASCII client is launched with

ocamlviz-ascii [options]

Command line options are

-server to specify the server machine (the default is the local host)

-port to specify the server port (the default value is 51000)

-o to specify the output file (the default value is ascii.log)

If no Ocamlviz server is running, the ASCII client fails with the error message

connection: couldn’t connect to the server machine:port

4 Developer Manual

4.1 Source Files

• ascii.ml: this is the ASCII client, it writes monitored data into a file

• binary.ml: contains functions that code and decode several Objective Caml
types in a buffer

• bproto.ml: contains the functions that code and decode the Ocamlviz messages
(see protocol.mli)

• db.ml: the client database that stores the data and gives functions to acces them.

• dot.ml: contains functions that create dot files (graphviz) from a variant (see
protocol.mli)

• graph.ml: a module that create a graph on a cairo canvas, and functions to manage
the graph

• gui misc.ml: contains miscellaneous functions for the GUI

• gui.ml: the main file of the GUI, containing the main and the functions to build
the notebook and export data into graphs and pages

• gui models.ml: contains the functions that create the models and refresh them

• gui pref.ml: contains the functions that create the preferences dialog windows,
and manage preferences

• gui view.ml: contains the functions that create the views associated to the models
(see gui models.ml)

• monitor impl.ml: contains the monitoring API

• net.ml: contains the client-side network

9



• ocamlviz.ml: includes monitor impl.ml and contains the server for alarms

• ocamlviz threads.ml: includes monitor impl.ml and contains the server for threads

• preflexer.mll: parses the file called “preferences” (if it exists) to apply the user
preferences

• protocol.mli: contains the protocol types

• timemap.ml: a module to store data in an array and retrieve them with a logarith-
mic complexity

• tree panel.ml: contains the functions to create and display a tree container

4.2 Protocol

The protocol is made of three types of messages:

• Declare, to declare a new tag to a client

• Send, to send a tag’s value (only after this tag was declared)

• Bind, to bind tags together (optionnal)

These 3 messages have the following structure:

command arguments

Declare tag, kind, name
Send tag, value
Bind tag list

4.3 Binary Implementation of the Protocol

4.3.1 Tag

A tag is an integer coded on 2 bytes.

4.3.2 Kind

Each kind is assigned to an integer. This integer is then coded on 1 byte.

10



Kind

0 Point
1 Time
2 Value int
3 Value float
4 Value bool
5 Value string
6 Tag count
7 Tag size
8 Special
9 KTree
10 Hash
11 KLog

4.3.3 Name

A name is coded into two parts, the first part being the string’s length on 4 bytes, and
the second being the string itself on length bytes.

Bytes 4 n
Value length (n) contents

4.3.4 List

A list is coded into two parts, the first part being the list’s length on 2 bytes, and the
second being the elements. The way the elements are coded will depend on their types.

Bytes 2 ? ... ?
Value length element #1 ... elements #n

4.3.5 Value

• Int

Bytes 1 4
Native Int 31 0 i

Bytes 1 8
Native Int 63 1 i

• Float

Bytes 1 8
Float 2 f

11



• String

Bytes 1 4 n
String 3 length (n) s

• Bool

Bytes 1 1
Bool 4 b

• Int64

Bytes 1 8
Int64 5 i

• Collected

Bytes 1
Collected 6

• Killed

Bytes 1
Killed 7

• Tree

Bytes 1 1 ?
Tree 8 # nodes Node List

Bytes 4 length(s) 1 ?
Node (s,l) length(s) s length(l) l (Child List)

Bytes 2
Child index

12



This coding allows to keep the sharing.

Tree coding example:

A

/ \
B C

/ \
D E

Nodes Value to code Meaning

8 Tree
5 # nodes

0 1 length D
D
0 0 child

1 1 length E
E
0 0 child

2 1 length B
B
2 2 children
0 node 0
1 node 1

3 1 length C
C
0 0 child

4 1 length A
A
2 2 children
2 node 2
3 node 3

• Hashtable

Bytes 1 4 4 4 4
Hashtable 9 # entries # elements # empty buckets max bucket length

• Log

Bytes 1 ?
Log 10 Float * String List

13



4.3.6 Command

Declare

Bytes 1 2 1 ?
Value 0 tag kind string

Send

Bytes 1 2 ?
Value 1 tag value

Bind

Bytes 1 2
Value 1 tag

4.4 Architecture

This is the architecture of Ocamlviz. When a program is monitored, a server is created,
sending the binary data on the network to its clients. Each client will decode every binary
data and store them into its own database.

Server Clients

Program Ocamlviz Net Database Display

. . .

Net Database Display

Binary Protocol

14



References

[1] Jacques Garrigue Lablgtk, an Objective Caml interface to Gtk+

http://wwwfun.kurims.kyoto-u.ac.jp/soft/lsl/lablgtk.html

[2] Cairo, a 2D graphics library with support for multiple output devices

http://cairographics.org/cairo-ocaml/

[3] Graphviz, an open source graph visualization software

http://www.graphviz.org/

15


