
Coxnet: Regularized Cox Regression
Noah Simon, Jerome Friedman, Trevor Hastie and Rob Tibshirani

2019-12-10

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Introduction

We will give a short tutorial on using coxnet. Coxnet is a function which fits the Cox Model regularized by an
elastic net penalty. It is used for underdetermined (or nearly underdetermined systems) and chooses a small
number of covariates to include in the model. Because the Cox Model is rarely used for actual prediction, we
will rather focus on finding and interpretating an appropriate model. We give a simple example of how to
format data and run the Cox Model in glmnet with cross validation.

Further details may be found in Simon et al. (2011), Tibshirani et al. (2012) and Simon, Friedman, and
Hastie (2013).

Example

We first load our data and set up the response. In this case x must be an n by p matrix of covariate values —
each row corresponds to a patient and each column a covariate. y is an n length vector of failure/censoring
times, and status is an n length vector with each entry, a 1 or a 0, indicating whether the corresponding
entry in y is indicative of a failure time or right censoring time (1 for failure, 0 for censoring)

library("glmnet")

## Loading required package: Matrix

## Loaded glmnet 3.0-2

library("survival")

patient.data <- readRDS("assets/coxnet.RDS")

We then call our functions to fit with the lasso penalty (α = 1), and cross validate. We set maxit = 1000
(increasing the maximum number of iterations to 1000) because our data is relatively high dimensional, so
more iterations are needed for convergence. In practice, the function will spit out an error if convergence isn’t
reached by the maximum number of iterations.

cv.fit <- cv.glmnet(patient.data$x, Surv(patient.data$time, patient.data$status), family="cox", maxit = 1000

## Warning: from glmnet Fortran code (error code -42); Convergence for 42th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

## Warning: from glmnet Fortran code (error code -42); Convergence for 42th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned
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## Warning: from glmnet Fortran code (error code -44); Convergence for 44th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

## Warning: from glmnet Fortran code (error code -39); Convergence for 39th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

## Warning: from glmnet Fortran code (error code -39); Convergence for 39th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

## Warning: from glmnet Fortran code (error code -43); Convergence for 43th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

## Warning: from glmnet Fortran code (error code -41); Convergence for 41th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

## Warning: from glmnet Fortran code (error code -43); Convergence for 43th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

## Warning: from glmnet Fortran code (error code -42); Convergence for 42th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

## Warning: from glmnet Fortran code (error code -42); Convergence for 42th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

## Warning: from glmnet Fortran code (error code -41); Convergence for 41th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

fit <- glmnet(patient.data$x, Surv(patient.data$time,patient.data$status), family = "cox", maxit = 1000)

## Warning: from glmnet Fortran code (error code -42); Convergence for 42th

## lambda value not reached after maxit=1000 iterations; solutions for larger

## lambdas returned

The Surv function packages the survival data into the form expected by glmnet. Once fit, we can view the
optimal λ value and a cross validated error plot to help evaluate our model.

plot(cv.fit)
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cv.fit$lambda.min

## [1] 0.2011518

The left vertical line in our plot shows us where the CV-error curve hits its minimum. The right vertical line
shows us the most regularized model with CV-error within1standard deviation of the minimum. In this case,
we see that the minimum was achieved by a fairly regularized model, however the right line indicates that
the null model (no coefficients included) is within1sd of the minimum. This might lead us to believe that in
actuality the covariates are not explaining any variability. For the time being we will concern ourselves with
the minimum CV-error model. We can check which covariates our model chose to be active, and see the
coefficients of those covariates.

Coefficients <- coef(fit, s = cv.fit$lambda.min)

Active.Index <- which(Coefficients != 0)

Active.Coefficients <- Coefficients[Active.Index]

coef(fit, s = cv.fit\$lambda.min) returns the p length coefficient vector of the solution corresponding
to λ =cv.fit$lambda.min.

Active.Index

## [1] 80 378 394

Active.Coefficients

## [1] 0.43611170 0.02841164 0.13574382

We see that our optimal model chose 2 active covariates (X80 and X394) each with a small positive effect on
hazard.
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